Exact Combinatorial Optimization
with Graph Convolutional Neural Networks

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin,
Andrea Lodi

Neural Information Processing Systems
33rd Annual Conference, Vancouver, Dec. 8-14 2019

l@ POLYTECHNIQUE .ERAD

« MONTREAL oheoiumms crocsommon

NNNNNNNNNNNNNNNNNNNNN

' A\ DATA SCIENCE
’ FOR REAL-TIME
4 DECISION-MAKING

\'

A

Overview

The Branching Problem
The Graph Convolution Neural Network Model

Experiments

The Branching Problem

The Branching Problem

Mixed-Integer Linear Program (MILP)

arg min c'x

X
subject to Ax < b,
| <x<u,

xeZP x R"P,

> c € R" the objective coefficients

» A e R™*" the constraint coefficient matrix

» b e R™ the constraint right-hand-sides

» |, u e R" the lower and upper variable bounds
>

p < n integer variables

NP-hard problem.

The Branching Problem

Mixed-Integer Linear Program (MILP)

The Branching Problem

Linear Program (LP) relaxation

arg min c'x
X

subject to Ax < b,
| <x<u,
xeR".

Convex problem, efficient algorithms (e.g., simplex).

» x* € ZP x R"P (lucky) — solution to the original MILP
» x* & 7ZP x R"P — lower bound to the original MILP

The Branching Problem

Linear Program (LP) relaxation

The Branching Problem

Branch-and-Bound

Split the LP recursively over a non-integral variable, i.e. 3i < p | x* ¢Z

x < |x'] Vx> [x].

1 1

Lower bound (L): minimal among leaf nodes.
Upper bound (U): minimal among leaf nodes with integral solution.
Stopping criterion:

» L = U (optimality certificate)

> | = oo (infeasibility certificate)

» L - U < threshold (early stopping)

The Branching Problem

Branch-and-Bound
X

TN

The Branching Problem

Branch-and-Bound

A
/J\

The Branching Problem

Branch-and-Bound

X/X\X

Lol

The Branching Problem

Branch-and-Bound

==

The Branching Problem

Branch-and-bound: a sequential process

Sequential decisions:

» variable selection u
(branching)

» node selection

bound

» cutting plane selection

» primal heuristic selection

solved
|

» simplex initialization time !
|

State-of-the-art in B&B
solvers: expert rules

The Branching Problem

Branch-and-bound: a sequential process

Sequential decisions:

» variable selection
(branching)

node selection
cutting plane selection

>
>
» primal heuristic selection
» simplex initialization

| 4

State-of-the-art in B&B
solvers: expert rules

bound

solved
|

time

Objective: no clear consensus

> L =Ufast?
> U- L\ fast?
> L Nfast ?

> U\ fast ?

The Branching Problem

Branch-and-bound: a sequential process

Sequential decisions:

» variable selection
(branching)

node selection
cutting plane selection

>
>
» primal heuristic selection
» simplex initialization

| 4

State-of-the-art in B&B
solvers: expert rules

bound

time

Objective: no clear consensus

> L =Ufast?
> U- L\ fast?
> L Nfast ?

> U\ fast ?

The Branching Problem

Expert branching rules: state-of-the-art

Strong branching: one-step forward looking (greedy)
» solve both LPs for each candidate variable
» pick the variable resulting in tightest relaxation
+ small trees
— computationally expensive

Pseudo-cost: backward looking
» keep track of tightenings in past branchings
» pick the most promising variable
+ very fast, almost no computations
— cold start

Reliability pseudo-cost: best of both worlds

» compute SB scores at the beginning
» gradually switches to pseudo-cost (4 other heuristics)
+ best overall solving time trade-off (on MIPLIB)

The Branching Problem

Markov Decision Process

Statese S

—»[Agent Ji

4[Environment]4—

Actionae A

Objective: take actions which maximize the long-term reward

D r(se),

t=0

with r : S — R a reward function.

The Branching Problem

Branching as a Markov Decision Process
State: the whole internal state of the solver, s.

The Branching Problem

Branching as a Markov Decision Process

State: the whole internal state of the solver, s.
Action: a branching variable, a€ {1,..., p}.

The Branching Problem

Branching as a Markov Decision Process

State: the whole internal state of the solver, s.
Action: a branching variable, a€ {1,..., p}.

Trajectory: 7 = (sg,...,ST)

The Branching Problem

Branching as a Markov Decision Process

State: the whole internal state of the solver, s.
Action: a branching variable, a€ {1,..., p}.

Trajectory: 7 = (sg,...,ST)
> initial state so: a MILP ~ p(sp);

The Branching Problem

Branching as a Markov Decision Process

State: the whole internal state of the solver, s.
Action: a branching variable, a€ {1,..., p}.

Trajectory: 7 = (sg,...,ST)
> initial state so: a MILP ~ p(sp);
» terminal state s: the MILP is solved;

The Branching Problem

Branching as a Markov Decision Process

State: the whole internal state of the solver, s.
Action: a branching variable, a€ {1,..., p}.

Trajectory: 7 = (sg,...,ST)
> initial state so: a MILP ~ p(sp);
» terminal state s: the MILP is solved;
> intermediate states: branching

St+1 ~ Pr(Sti1lse) = Z m(alst) p(setafst; a).

acA branching policy solver internals

The Branching Problem

Branching as a Markov Decision Process

State: the whole internal state of the solver, s.
Action: a branching variable, a€ {1,..., p}.

Trajectory: 7 = (sg,...,ST)
> initial state so: a MILP ~ p(sp);
» terminal state s: the MILP is solved;
> intermediate states: branching

St+1 ~ Pr(Sti1lse) = Z m(alst) p(setafst; a).

acA branching policy solver internals

Branching problem: solve

7 =argmax E [r(7)],

s T~ P

with r(7) = > ., r(s).

The Branching Problem

Branching as a Markov Decision Process

State: the whole internal state of the solver, s.
Action: a branching variable, a€ {1,..., p}.

Trajectory: 7 = (sg,...,ST)
> initial state so: a MILP ~ p(sp);
» terminal state s: the MILP is solved;
> intermediate states: branching

St+1 ~ Pr(Sti1lse) = Z m(alst) p(setafst; a).

acA branching policy solver internals

Branching problem: solve

7 =argmax E [r(7)],

T T~ Pr
with r(7) = > ., r(s).

A policy 7 may not be optimal in two distinct configurations.

The Branching Problem

Challenges
MDP = Reinforcement learning (RL) ?

The Branching Problem

Challenges
MDP = Reinforcement learning (RL) ?

State representation: s
» global level: original MILP, tree, bounds, focused node. . .

» node level: variable bounds, LP solution, simplex statistics. . .

The Branching Problem

Challenges
MDP = Reinforcement learning (RL) ?

State representation: s
» global level: original MILP, tree, bounds, focused node. . .
» node level: variable bounds, LP solution, simplex statistics. . .
— dynamically growing structure (tree)

— variable-size instances (cols, rows) = Graph Neural Network

The Branching Problem

Challenges
MDP = Reinforcement learning (RL) ?

State representation: s
» global level: original MILP, tree, bounds, focused node. . .
» node level: variable bounds, LP solution, simplex statistics. . .
— dynamically growing structure (tree)

— variable-size instances (cols, rows) = Graph Neural Network

Sampling trajectories: 7 ~ p,
» collect one 7 = solving a MILP (with 7 likely not optimal)

— expensive = train on small instances

The Branching Problem

Challenges
MDP = Reinforcement learning (RL) ?

State representation: s
» global level: original MILP, tree, bounds, focused node. . .
» node level: variable bounds, LP solution, simplex statistics. . .
— dynamically growing structure (tree)

— variable-size instances (cols, rows) = Graph Neural Network

Sampling trajectories: 7 ~ p,
» collect one 7 = solving a MILP (with 7 likely not optimal)

— expensive = train on small instances

Reward function: r
» no consensus

+ a strong expert exists = imitation learning

The Branching Problem

Machine learning approaches

Node selection

» He et al,, 2014
» Song et al., 2018

Variable selection (branching)

» Khalil, Le Bodic, et al., 2016 = "online" imitation learning
» Hansknecht et al., 2018 = offline imitation learning
» Balcan et al., 2018 = theoretical results

Cut selection
» Baltean-Lugojan et al., 2018
» Tang et al., 2019

Primal heuristic selection

» Khalil, Dilkina, et al., 2017
» Hendel et al., 2018

The Graph Convolution Neural Network Model

The Graph Convolution Neural Network Model

Node state encoding

Natural representation : variable / constraint bipartite graph

€0,0
e170
€20
9271/@

arg min c'x

X

subject to Ax < b,
| <x <u,

x € ZP x R"™P,

WS

» v;: variable features (type, coef., bounds, LP solution...)
» c;: constraint features (right-hand-side, LP slack...)
» e;;: non-zero coefficients in A

D. Selsam et al. (2019). Learning a SAT Solver from Single-Bit Supervision.

The Graph Convolution Neural Network Model

Branching Policy as a GCNN Model

Neighbourhood-based updates: v; < N fo(vi,eij, cj)

0.2 e
N
0.1 ———— : — e

0.7 <—<:)4 eQ’I/@

H/_/H—/

m(als) s

T. N. Kipf et al. (2016). Semi-Supervised Classification with Graph Convolutional
Networks.

The Graph Convolution Neural Network Model

Branching Policy as a GCNN Model

Neighbourhood-based updates: v; < N fo(vi,eij, cj)

0.2 e
N
0.1 ———— : — e

0.7 <—<:)4 eQ’I/@

~— ~—
m(als) s
Natural model choice for graph-structured data

» permutation-invariance
» benefits from sparsity

T. N. Kipf et al. (2016). Semi-Supervised Classification with Graph Convolutional
Networks.

Experiments

Experiments

Imitation learning

Full Strong Branching (FSB): good branching rule, but expensive.
Can we learn a fast, good-enough approximation 7

LA, Gleixner et al. (July 2018). The SCIP Optimization Suite 6.

Experiments

Imitation learning

Full Strong Branching (FSB): good branching rule, but expensive.
Can we learn a fast, good-enough approximation 7

Behavioural cloning

> collect D = {(s,a*),...} from the expert agent (FSB)
> estimate 7*(a|s) from D
+ no reward function, supervised learning, well-behaved

— will never surpass the expert...

Implementation with the open-source solver SCIP?

LA, Gleixner et al. (July 2018). The SCIP Optimization Suite 6.

Experiments

Imitation learning

Full Strong Branching (FSB): good branching rule, but expensive.
Can we learn a fast, good-enough approximation 7

Behavioural cloning

> collect D = {(s,a*),...} from the expert agent (FSB)
> estimate 7*(a|s) from D
+ no reward function, supervised learning, well-behaved

— will never surpass the expert...

Implementation with the open-source solver SCIP?

Not a new idea
» Alvarez et al., 2017 predict SB scores, XTrees model

» Khalil, Le Bodic, et al., 2016 predict SB rankings, SVMrank model
» Hansknecht et al., 2018 do the same, >-MART model

LA, Gleixner et al. (July 2018). The SCIP Optimization Suite 6.

Experiments

Minimum set covering?

Easy Medium Hard

Model Time Wins Nodes Time Wins Nodes Time Wins Nodes

FSB 17.30 0/100 17 41134 0/ 90 171 3600.00 0/ O n/a
RPB 8.98 0/100 54 60.07 0/100 1741 1677.02 4 /65 47299
XTrees 928 0/100 187 92.47 0/100 2187 2869.21 0/35 59013
SVMrank 8.10 1/100 165 73.58 0/100 1915 2389.92 0/47 42120
A-MART 7.19 14 /100 167 59.98 0/100 1925 2165.96 0 /54 45319
GCNN 6.59 85 /100 134 42.48 100 /100 1450 1489.91 66 /70 29981

3 problem sizes

» 500 rows, 1000 cols (easy), training distribution
» 1000 rows, 1000 cols (medium)
» 2000 rows, 1000 cols (hard)

2E. Balas et al. (1980). Set covering algorithms using cutting planes,
heuristics, and subgradient optimization: a computational study.

Experiments

Minimum set covering?

Easy Medium Hard

Model Time Wins Nodes Time Wins Nodes Time Wins Nodes

FSB 17.30 0/100 17 41134 0/ 90 171 3600.00 0/ O n/a
RPB 8.98 0/100 54 60.07 0/100 1741 1677.02 4 /65 47299
XTrees 928 0/100 187 92.47 0/100 2187 2869.21 0/35 59013
SVMrank 8.10 1/100 165 73.58 0/100 1915 2389.92 0/47 42120
A-MART 7.19 14 /100 167 59.98 0/100 1925 2165.96 0 /54 45319
GCNN 6.59 85 /100 134 42.48 100 /100 1450 1489.91 66 /70 29981

3 problem sizes

» 500 rows, 1000 cols (easy), training distribution
» 1000 rows, 1000 cols (medium)
» 2000 rows, 1000 cols (hard)

Pays off: better than SCIP's default in terms of solving time.

2E. Balas et al. (1980). Set covering algorithms using cutting planes,
heuristics, and subgradient optimization: a computational study.

Experiments

Minimum set covering?

Easy Medium Hard

Model Time Wins Nodes Time Wins Nodes Time Wins Nodes

FSB 17.30 0/100 17 41134 0/ 90 171 3600.00 0/ O n/a
RPB 8.98 0/100 54 60.07 0/100 1741 1677.02 4 /65 47299
XTrees 928 0/100 187 92.47 0/100 2187 2869.21 0/35 59013
SVMrank 8.10 1/100 165 73.58 0/100 1915 2389.92 0/47 42120
A-MART 7.19 14 /100 167 59.98 0/100 1925 2165.96 0 /54 45319
GCNN 6.59 85 /100 134 42.48 100 /100 1450 1489.91 66 /70 29981

3 problem sizes

» 500 rows, 1000 cols (easy), training distribution
» 1000 rows, 1000 cols (medium)
» 2000 rows, 1000 cols (hard)

Pays off: better than SCIP's default in terms of solving time.
Generalizes to harder problems !

2E. Balas et al. (1980). Set covering algorithms using cutting planes,
heuristics, and subgradient optimization: a computational study.

Experiments

Combinatorial auction3

Easy Medium Hard
Model Time Wins Nodes Time Wins Nodes Time Wins Nodes

FSB 411 0/100 6 86.90 0 /100 72 181333 0/ 68 400
RPB 274 0/100 10 17.41 0/100 689 136.17 13 /100 5511
XTrees 247 0/100 86 23.70 0/100 976 45139 0/ 95 10290
SVMrank 231 0/100 77 23.10 0/100 867 364.48 0/ 98 6329
A-MART 1.79 75/100 77 14.42 1/100 873 22254 0/100 7006
GCNN 1.85 25 /100 70 10.29 99 /100 657 114.16 87 /100 5169

3 problem sizes
» 100 items, 500 bids (easy), training distribution

» 200 items, 1000 bids (medium)
» 300 items, 1500 bids (hard)

3K. Leyton-Brown et al. (2000). Towards a Universal Test Suite for
Combinatorial Auction Algorithms.

Experiments

Capacitated facility location*

Easy Medium Hard

Model Time Wins Nodes Time Wins Nodes Time Wins Nodes
FSB 30.36 4 /100 14 21425 1/100 76 74291 15/90 55
RPB 26.55 9/100 22 156.12 8 / 100 142 63150 14 /96 110
XTrees 2896 3/100 135 159.86 3/100 401 671.01 1/95 381
SVMrank 2358 11 /100 117 130.86 13 /100 348 586.13 21 /95 321
A-MART 23.34 16/100 117 128.48 23 /100 349 58238 15/95 314
GCNN 22.10 57 /100 107 120.94 52/100 339 563.36 30/95 338

3 problem sizes

» 100 facilities, 100 customers (easy), training distribution

» 100 facilities, 200 customers (medium)
» 100 facilities, 400 customers (hard)

4G. Cornuejols et al. (1991). A comparison of heuristics and relaxations for
the capacitated plant location problem.

Experiments

Maximum independent set®

Easy Medium Hard

Model Time Wins Nodes Time Wins Nodes Time Wins Nodes

FSB 23.58 9/100 7 150355 0/ 74 38 360000 0/ O n/a
RPB 8.77 7/100 20 110.99 41 /100 729 204561 22/ 42 2675
XTrees 10.75 1 /100 76 1183.37 1/ 47 4664 3565.12 0/ 3 38296
SVMrank 8.83 2/100 46 24291 1/ 96 546 290294 1/ 18 6256
A-MART 7.31 30/100 52 219.22 15/ 91 747 304494 0/ 12 8893
GCNN 6.43 51 /100 43 19291 42/ 82 1841 2024.37 25/ 29 2997

3 problem sizes, Barabasi-Albert graphs (affinity=4)

» 500 nodes (easy), training distribution
» 1000 nodes (medium)
» 1500 nodes (hard)

®D. Chalupa et al. (2014). On the Growth of Large Independent Sets in

Scale-Free Networks.

Experiments

Reinforcement learning

Early results: set covering problem

Number of nodes
(ratio vs pre-trained policy)

1.2
Reward: negative
o number of nodes
) —val_idation
frain Proximal Policy
) Optimization (PPO)
Challenging. . . but
0.9 promising !
0.8

08:00:00 10:00:00 12:00:00 14:00:00 16:00:00

Conclusion
Heuristic vs data-driven branching:
+ tune B&B to your problem of interest automatically
— no guarantees outside of the training distribution
— requires training instances

https://arxiv.org/abs/1906.01629
https://github.com/ds4dm/learn2branch

Conclusion
Heuristic vs data-driven branching:
+ tune B&B to your problem of interest automatically
— no guarantees outside of the training distribution
— requires training instances

What next:

» real-world problems

» other solver components: node selection, cut selection...
» reinforcement learning: still a lot of challenges

» interpretation: which variables are chosen 7 Why 7

>

provide an clean APl + benchmarks for MILP adaptive solving
(based on the open-source SCIP solver)

Paper: https://arxiv.org/abs/1906.01629 M. Gasse et al. (2019). Exact
Combinatorial Optimization with Graph Convolutional Neural Networks.

Code: https://github.com/ds4dm/learn2branch

https://arxiv.org/abs/1906.01629
https://github.com/ds4dm/learn2branch

Exact Combinatorial Optimization
with Graph Convolutional Neural Networks

Thank you!

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin,
Andrea Lodi

e f} POLYTECHNIQUE .ERAD

'.\ DATA SCIENCE
MONTREAL

FOR REAL-TIME
DECISION-MAKING

\.

Learned Policy vs Reliability Pseudocost (SCIP default)

time (secs)

Branching time per node

—— relpscost
1.0 1
gch_2convs
0.8
0.6
0.4 1
0.2 1
0.0 1
5 10 15 20 25

node depth

Time delta:

- python overhead

- data extraction (s)
- model evaluation

Close the gap:

- engineering ?

- efficient heuristics
(reliability) ?

	The Branching Problem
	The Graph Convolution Neural Network Model
	Experiments
	
	
	Appendix

