
Exact Combinatorial Optimization
with Graph Convolutional Neural Networks

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin,
Andrea Lodi

Neural Information Processing Systems
33rd Annual Conference, Vancouver, Dec. 8-14 2019

1/30



Overview

The Branching Problem

The Graph Convolution Neural Network Model

Experiments

2/30



The Branching Problem



The Branching Problem

Mixed-Integer Linear Program (MILP)

argmin
x

c>x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Zp × Rn−p.

I c P Rn the objective coefficients
I A P Rm×n the constraint coefficient matrix
I b P Rm the constraint right-hand-sides
I l,u P Rn the lower and upper variable bounds
I p ≤ n integer variables

NP-hard problem.

4/30



The Branching Problem

Mixed-Integer Linear Program (MILP)

5/30



The Branching Problem

Linear Program (LP) relaxation

argmin
x

c>x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Rn.

Convex problem, efficient algorithms (e.g., simplex).

I x? P Zp × Rn−p (lucky) → solution to the original MILP
I x? 6P Zp × Rn−p → lower bound to the original MILP

6/30



The Branching Problem

Linear Program (LP) relaxation

7/30



The Branching Problem

Branch-and-Bound

Split the LP recursively over a non-integral variable, i.e. ∃i ≤ p | x?i 6P Z

xi ≤ bx?i c ∨ xi ≥ dx?i e.

Lower bound (L): minimal among leaf nodes.
Upper bound (U): minimal among leaf nodes with integral solution.

Stopping criterion:

I L = U (optimality certificate)

I L = ∞ (infeasibility certificate)

I L - U < threshold (early stopping)

8/30



The Branching Problem

Branch-and-Bound

9/30



The Branching Problem

Branch-and-Bound

10/30



The Branching Problem

Branch-and-Bound

11/30



The Branching Problem

Branch-and-Bound

12/30



The Branching Problem

Branch-and-bound: a sequential process

Sequential decisions:
I variable selection

(branching)
I node selection
I cutting plane selection
I primal heuristic selection
I simplex initialization
I . . .

State-of-the-art in B&B
solvers: expert rules

Objective: no clear consensus
I L = U fast ?
I U - L ↘ fast ?
I L ↗ fast ?
I U ↘ fast ?

13/30



The Branching Problem

Branch-and-bound: a sequential process

Sequential decisions:
I variable selection

(branching)
I node selection
I cutting plane selection
I primal heuristic selection
I simplex initialization
I . . .

State-of-the-art in B&B
solvers: expert rules

Objective: no clear consensus
I L = U fast ?
I U - L ↘ fast ?
I L ↗ fast ?
I U ↘ fast ?

13/30



The Branching Problem

Branch-and-bound: a sequential process

Sequential decisions:
I variable selection

(branching)
I node selection
I cutting plane selection
I primal heuristic selection
I simplex initialization
I . . .

State-of-the-art in B&B
solvers: expert rules

Objective: no clear consensus
I L = U fast ?
I U - L ↘ fast ?
I L ↗ fast ?
I U ↘ fast ?

13/30



The Branching Problem

Expert branching rules: state-of-the-art

Strong branching: one-step forward looking (greedy)
I solve both LPs for each candidate variable
I pick the variable resulting in tightest relaxation
+ small trees
− computationally expensive

Pseudo-cost: backward looking
I keep track of tightenings in past branchings
I pick the most promising variable
+ very fast, almost no computations
− cold start

Reliability pseudo-cost: best of both worlds
I compute SB scores at the beginning
I gradually switches to pseudo-cost (+ other heuristics)
+ best overall solving time trade-off (on MIPLIB)

14/30



The Branching Problem

Markov Decision Process

Agent

Environment

Action a P AState s P S

Objective: take actions which maximize the long-term reward

∞∑
t=0

r(st),

with r : S → R a reward function.

15/30



The Branching Problem

Branching as a Markov Decision Process
State: the whole internal state of the solver, s.

Action: a branching variable, a P {1, . . . , p}.

Trajectory: τ = (s0, . . . , sT )
I initial state s0: a MILP ∼ p(s0);
I terminal state sT : the MILP is solved;
I intermediate states: branching

st+1 ∼ pπ(st+1|st) =
∑
aPA

π(a|st)︸ ︷︷ ︸
branching policy

p(st+1|st , a)︸ ︷︷ ︸
solver internals

.

Branching problem: solve

π? = argmax
π

E
τ∼pπ

[r(τ)] ,

with r(τ) =
∑

sPτ r(s).

A policy π? may not be optimal in two distinct configurations.

16/30



The Branching Problem

Branching as a Markov Decision Process
State: the whole internal state of the solver, s.
Action: a branching variable, a P {1, . . . , p}.

Trajectory: τ = (s0, . . . , sT )
I initial state s0: a MILP ∼ p(s0);
I terminal state sT : the MILP is solved;
I intermediate states: branching

st+1 ∼ pπ(st+1|st) =
∑
aPA

π(a|st)︸ ︷︷ ︸
branching policy

p(st+1|st , a)︸ ︷︷ ︸
solver internals

.

Branching problem: solve

π? = argmax
π

E
τ∼pπ

[r(τ)] ,

with r(τ) =
∑

sPτ r(s).

A policy π? may not be optimal in two distinct configurations.

16/30



The Branching Problem

Branching as a Markov Decision Process
State: the whole internal state of the solver, s.
Action: a branching variable, a P {1, . . . , p}.

Trajectory: τ = (s0, . . . , sT )

I initial state s0: a MILP ∼ p(s0);
I terminal state sT : the MILP is solved;
I intermediate states: branching

st+1 ∼ pπ(st+1|st) =
∑
aPA

π(a|st)︸ ︷︷ ︸
branching policy

p(st+1|st , a)︸ ︷︷ ︸
solver internals

.

Branching problem: solve

π? = argmax
π

E
τ∼pπ

[r(τ)] ,

with r(τ) =
∑

sPτ r(s).

A policy π? may not be optimal in two distinct configurations.

16/30



The Branching Problem

Branching as a Markov Decision Process
State: the whole internal state of the solver, s.
Action: a branching variable, a P {1, . . . , p}.

Trajectory: τ = (s0, . . . , sT )
I initial state s0: a MILP ∼ p(s0);

I terminal state sT : the MILP is solved;
I intermediate states: branching

st+1 ∼ pπ(st+1|st) =
∑
aPA

π(a|st)︸ ︷︷ ︸
branching policy

p(st+1|st , a)︸ ︷︷ ︸
solver internals

.

Branching problem: solve

π? = argmax
π

E
τ∼pπ

[r(τ)] ,

with r(τ) =
∑

sPτ r(s).

A policy π? may not be optimal in two distinct configurations.

16/30



The Branching Problem

Branching as a Markov Decision Process
State: the whole internal state of the solver, s.
Action: a branching variable, a P {1, . . . , p}.

Trajectory: τ = (s0, . . . , sT )
I initial state s0: a MILP ∼ p(s0);
I terminal state sT : the MILP is solved;

I intermediate states: branching

st+1 ∼ pπ(st+1|st) =
∑
aPA

π(a|st)︸ ︷︷ ︸
branching policy

p(st+1|st , a)︸ ︷︷ ︸
solver internals

.

Branching problem: solve

π? = argmax
π

E
τ∼pπ

[r(τ)] ,

with r(τ) =
∑

sPτ r(s).

A policy π? may not be optimal in two distinct configurations.

16/30



The Branching Problem

Branching as a Markov Decision Process
State: the whole internal state of the solver, s.
Action: a branching variable, a P {1, . . . , p}.

Trajectory: τ = (s0, . . . , sT )
I initial state s0: a MILP ∼ p(s0);
I terminal state sT : the MILP is solved;
I intermediate states: branching

st+1 ∼ pπ(st+1|st) =
∑
aPA

π(a|st)︸ ︷︷ ︸
branching policy

p(st+1|st , a)︸ ︷︷ ︸
solver internals

.

Branching problem: solve

π? = argmax
π

E
τ∼pπ

[r(τ)] ,

with r(τ) =
∑

sPτ r(s).

A policy π? may not be optimal in two distinct configurations.

16/30



The Branching Problem

Branching as a Markov Decision Process
State: the whole internal state of the solver, s.
Action: a branching variable, a P {1, . . . , p}.

Trajectory: τ = (s0, . . . , sT )
I initial state s0: a MILP ∼ p(s0);
I terminal state sT : the MILP is solved;
I intermediate states: branching

st+1 ∼ pπ(st+1|st) =
∑
aPA

π(a|st)︸ ︷︷ ︸
branching policy

p(st+1|st , a)︸ ︷︷ ︸
solver internals

.

Branching problem: solve

π? = argmax
π

E
τ∼pπ

[r(τ)] ,

with r(τ) =
∑

sPτ r(s).

A policy π? may not be optimal in two distinct configurations.

16/30



The Branching Problem

Branching as a Markov Decision Process
State: the whole internal state of the solver, s.
Action: a branching variable, a P {1, . . . , p}.

Trajectory: τ = (s0, . . . , sT )
I initial state s0: a MILP ∼ p(s0);
I terminal state sT : the MILP is solved;
I intermediate states: branching

st+1 ∼ pπ(st+1|st) =
∑
aPA

π(a|st)︸ ︷︷ ︸
branching policy

p(st+1|st , a)︸ ︷︷ ︸
solver internals

.

Branching problem: solve

π? = argmax
π

E
τ∼pπ

[r(τ)] ,

with r(τ) =
∑

sPτ r(s).

A policy π? may not be optimal in two distinct configurations.
16/30



The Branching Problem

Challenges
MDP =⇒ Reinforcement learning (RL) ?

State representation: s
I global level: original MILP, tree, bounds, focused node. . .
I node level: variable bounds, LP solution, simplex statistics. . .
− dynamically growing structure (tree)
− variable-size instances (cols, rows) =⇒ Graph Neural Network

Sampling trajectories: τ ∼ pπ
I collect one τ = solving a MILP (with π likely not optimal)
− expensive =⇒ train on small instances

Reward function: r
I no consensus
+ a strong expert exists =⇒ imitation learning

17/30



The Branching Problem

Challenges
MDP =⇒ Reinforcement learning (RL) ?

State representation: s
I global level: original MILP, tree, bounds, focused node. . .
I node level: variable bounds, LP solution, simplex statistics. . .

− dynamically growing structure (tree)
− variable-size instances (cols, rows) =⇒ Graph Neural Network

Sampling trajectories: τ ∼ pπ
I collect one τ = solving a MILP (with π likely not optimal)
− expensive =⇒ train on small instances

Reward function: r
I no consensus
+ a strong expert exists =⇒ imitation learning

17/30



The Branching Problem

Challenges
MDP =⇒ Reinforcement learning (RL) ?

State representation: s
I global level: original MILP, tree, bounds, focused node. . .
I node level: variable bounds, LP solution, simplex statistics. . .
− dynamically growing structure (tree)
− variable-size instances (cols, rows) =⇒ Graph Neural Network

Sampling trajectories: τ ∼ pπ
I collect one τ = solving a MILP (with π likely not optimal)
− expensive =⇒ train on small instances

Reward function: r
I no consensus
+ a strong expert exists =⇒ imitation learning

17/30



The Branching Problem

Challenges
MDP =⇒ Reinforcement learning (RL) ?

State representation: s
I global level: original MILP, tree, bounds, focused node. . .
I node level: variable bounds, LP solution, simplex statistics. . .
− dynamically growing structure (tree)
− variable-size instances (cols, rows) =⇒ Graph Neural Network

Sampling trajectories: τ ∼ pπ
I collect one τ = solving a MILP (with π likely not optimal)
− expensive =⇒ train on small instances

Reward function: r
I no consensus
+ a strong expert exists =⇒ imitation learning

17/30



The Branching Problem

Challenges
MDP =⇒ Reinforcement learning (RL) ?

State representation: s
I global level: original MILP, tree, bounds, focused node. . .
I node level: variable bounds, LP solution, simplex statistics. . .
− dynamically growing structure (tree)
− variable-size instances (cols, rows) =⇒ Graph Neural Network

Sampling trajectories: τ ∼ pπ
I collect one τ = solving a MILP (with π likely not optimal)
− expensive =⇒ train on small instances

Reward function: r
I no consensus
+ a strong expert exists =⇒ imitation learning

17/30



The Branching Problem

Machine learning approaches

Node selection
I He et al., 2014
I Song et al., 2018

Variable selection (branching)
I Khalil, Le Bodic, et al., 2016 =⇒ "online" imitation learning
I Hansknecht et al., 2018 =⇒ offline imitation learning
I Balcan et al., 2018 =⇒ theoretical results

Cut selection
I Baltean-Lugojan et al., 2018
I Tang et al., 2019

Primal heuristic selection
I Khalil, Dilkina, et al., 2017
I Hendel et al., 2018

18/30



The Graph Convolution Neural Network Model



The Graph Convolution Neural Network Model

Node state encoding

Natural representation : variable / constraint bipartite graph

argmin
x

c>x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Zp × Rn−p.

v0

v1

v2

c0

c1

e0,0

e2,0
e1,0

e2,1

I vi : variable features (type, coef., bounds, LP solution. . . )
I cj : constraint features (right-hand-side, LP slack. . . )
I ei ,j : non-zero coefficients in A

D. Selsam et al. (2019). Learning a SAT Solver from Single-Bit Supervision.

20/30



The Graph Convolution Neural Network Model

Branching Policy as a GCNN Model
Neighbourhood-based updates: vi ←

∑
jPNi

fθ(vi , ei,j , cj)

v0

v1

v2

0.2

0.1

0.7

π(a | s)

c0

c1

e0,0

e2,0

e1,0

e2,1

s

Natural model choice for graph-structured data

I permutation-invariance
I benefits from sparsity

T. N. Kipf et al. (2016). Semi-Supervised Classification with Graph Convolutional
Networks.

21/30



The Graph Convolution Neural Network Model

Branching Policy as a GCNN Model
Neighbourhood-based updates: vi ←

∑
jPNi

fθ(vi , ei,j , cj)

v0

v1

v2

0.2

0.1

0.7

π(a | s)

c0

c1

e0,0

e2,0

e1,0

e2,1

s

Natural model choice for graph-structured data

I permutation-invariance
I benefits from sparsity

T. N. Kipf et al. (2016). Semi-Supervised Classification with Graph Convolutional
Networks.

21/30



Experiments



Experiments

Imitation learning
Full Strong Branching (FSB): good branching rule, but expensive.
Can we learn a fast, good-enough approximation ?

Behavioural cloning

I collect D = {(s, a?), . . . } from the expert agent (FSB)
I estimate π?(a | s) from D
+ no reward function, supervised learning, well-behaved
− will never surpass the expert...

Implementation with the open-source solver SCIP1

Not a new idea

I Alvarez et al., 2017 predict SB scores, XTrees model
I Khalil, Le Bodic, et al., 2016 predict SB rankings, SVMrank model
I Hansknecht et al., 2018 do the same, λ-MART model

1A. Gleixner et al. (July 2018). The SCIP Optimization Suite 6.
23/30



Experiments

Imitation learning
Full Strong Branching (FSB): good branching rule, but expensive.
Can we learn a fast, good-enough approximation ?

Behavioural cloning

I collect D = {(s, a?), . . . } from the expert agent (FSB)
I estimate π?(a | s) from D
+ no reward function, supervised learning, well-behaved
− will never surpass the expert...

Implementation with the open-source solver SCIP1

Not a new idea

I Alvarez et al., 2017 predict SB scores, XTrees model
I Khalil, Le Bodic, et al., 2016 predict SB rankings, SVMrank model
I Hansknecht et al., 2018 do the same, λ-MART model

1A. Gleixner et al. (July 2018). The SCIP Optimization Suite 6.
23/30



Experiments

Imitation learning
Full Strong Branching (FSB): good branching rule, but expensive.
Can we learn a fast, good-enough approximation ?

Behavioural cloning

I collect D = {(s, a?), . . . } from the expert agent (FSB)
I estimate π?(a | s) from D
+ no reward function, supervised learning, well-behaved
− will never surpass the expert...

Implementation with the open-source solver SCIP1

Not a new idea

I Alvarez et al., 2017 predict SB scores, XTrees model
I Khalil, Le Bodic, et al., 2016 predict SB rankings, SVMrank model
I Hansknecht et al., 2018 do the same, λ-MART model

1A. Gleixner et al. (July 2018). The SCIP Optimization Suite 6.
23/30



Experiments

Minimum set covering2

Easy Medium Hard
Model Time Wins Nodes Time Wins Nodes Time Wins Nodes
FSB 17.30 0 / 100 17 411.34 0 / 90 171 3600.00 0 / 0 n/a
RPB 8.98 0 / 100 54 60.07 0 / 100 1741 1677.02 4 / 65 47 299
XTrees 9.28 0 / 100 187 92.47 0 / 100 2187 2869.21 0 / 35 59 013

SVMrank 8.10 1 / 100 165 73.58 0 / 100 1915 2389.92 0 / 47 42 120
λ-MART 7.19 14 / 100 167 59.98 0 / 100 1925 2165.96 0 / 54 45 319
GCNN 6.59 85 / 100 134 42.48 100 / 100 1450 1489.91 66 / 70 29 981

3 problem sizes

I 500 rows, 1000 cols (easy), training distribution
I 1000 rows, 1000 cols (medium)
I 2000 rows, 1000 cols (hard)

Pays off: better than SCIP’s default in terms of solving time.
Generalizes to harder problems !

2E. Balas et al. (1980). Set covering algorithms using cutting planes,
heuristics, and subgradient optimization: a computational study.

24/30



Experiments

Minimum set covering2

Easy Medium Hard
Model Time Wins Nodes Time Wins Nodes Time Wins Nodes
FSB 17.30 0 / 100 17 411.34 0 / 90 171 3600.00 0 / 0 n/a
RPB 8.98 0 / 100 54 60.07 0 / 100 1741 1677.02 4 / 65 47 299
XTrees 9.28 0 / 100 187 92.47 0 / 100 2187 2869.21 0 / 35 59 013

SVMrank 8.10 1 / 100 165 73.58 0 / 100 1915 2389.92 0 / 47 42 120
λ-MART 7.19 14 / 100 167 59.98 0 / 100 1925 2165.96 0 / 54 45 319
GCNN 6.59 85 / 100 134 42.48 100 / 100 1450 1489.91 66 / 70 29 981

3 problem sizes

I 500 rows, 1000 cols (easy), training distribution
I 1000 rows, 1000 cols (medium)
I 2000 rows, 1000 cols (hard)

Pays off: better than SCIP’s default in terms of solving time.

Generalizes to harder problems !

2E. Balas et al. (1980). Set covering algorithms using cutting planes,
heuristics, and subgradient optimization: a computational study.

24/30



Experiments

Minimum set covering2

Easy Medium Hard
Model Time Wins Nodes Time Wins Nodes Time Wins Nodes
FSB 17.30 0 / 100 17 411.34 0 / 90 171 3600.00 0 / 0 n/a
RPB 8.98 0 / 100 54 60.07 0 / 100 1741 1677.02 4 / 65 47 299
XTrees 9.28 0 / 100 187 92.47 0 / 100 2187 2869.21 0 / 35 59 013

SVMrank 8.10 1 / 100 165 73.58 0 / 100 1915 2389.92 0 / 47 42 120
λ-MART 7.19 14 / 100 167 59.98 0 / 100 1925 2165.96 0 / 54 45 319
GCNN 6.59 85 / 100 134 42.48 100 / 100 1450 1489.91 66 / 70 29 981

3 problem sizes

I 500 rows, 1000 cols (easy), training distribution
I 1000 rows, 1000 cols (medium)
I 2000 rows, 1000 cols (hard)

Pays off: better than SCIP’s default in terms of solving time.
Generalizes to harder problems !

2E. Balas et al. (1980). Set covering algorithms using cutting planes,
heuristics, and subgradient optimization: a computational study.

24/30



Experiments

Combinatorial auction3

Easy Medium Hard
Model Time Wins Nodes Time Wins Nodes Time Wins Nodes
FSB 4.11 0 / 100 6 86.90 0 / 100 72 1813.33 0 / 68 400
RPB 2.74 0 / 100 10 17.41 0 / 100 689 136.17 13 / 100 5511
XTrees 2.47 0 / 100 86 23.70 0 / 100 976 451.39 0 / 95 10 290

SVMrank 2.31 0 / 100 77 23.10 0 / 100 867 364.48 0 / 98 6329
λ-MART 1.79 75 / 100 77 14.42 1 / 100 873 222.54 0 / 100 7006
GCNN 1.85 25 / 100 70 10.29 99 / 100 657 114.16 87 / 100 5169

3 problem sizes

I 100 items, 500 bids (easy), training distribution
I 200 items, 1000 bids (medium)
I 300 items, 1500 bids (hard)

3K. Leyton-Brown et al. (2000). Towards a Universal Test Suite for
Combinatorial Auction Algorithms.

25/30



Experiments

Capacitated facility location4

Easy Medium Hard
Model Time Wins Nodes Time Wins Nodes Time Wins Nodes
FSB 30.36 4 / 100 14 214.25 1 / 100 76 742.91 15 / 90 55
RPB 26.55 9 / 100 22 156.12 8 / 100 142 631.50 14 / 96 110
XTrees 28.96 3 / 100 135 159.86 3 / 100 401 671.01 1 / 95 381

SVMrank 23.58 11 / 100 117 130.86 13 / 100 348 586.13 21 / 95 321
λ-MART 23.34 16 / 100 117 128.48 23 / 100 349 582.38 15 / 95 314
GCNN 22.10 57 / 100 107 120.94 52 / 100 339 563.36 30 / 95 338

3 problem sizes

I 100 facilities, 100 customers (easy), training distribution
I 100 facilities, 200 customers (medium)
I 100 facilities, 400 customers (hard)

4G. Cornuejols et al. (1991). A comparison of heuristics and relaxations for
the capacitated plant location problem.

26/30



Experiments

Maximum independent set5

Easy Medium Hard
Model Time Wins Nodes Time Wins Nodes Time Wins Nodes
FSB 23.58 9 / 100 7 1503.55 0 / 74 38 3600.00 0 / 0 n/a
RPB 8.77 7 / 100 20 110.99 41 / 100 729 2045.61 22 / 42 2675
XTrees 10.75 1 / 100 76 1183.37 1 / 47 4664 3565.12 0 / 3 38 296

SVMrank 8.83 2 / 100 46 242.91 1 / 96 546 2902.94 1 / 18 6256
λ-MART 7.31 30 / 100 52 219.22 15 / 91 747 3044.94 0 / 12 8893
GCNN 6.43 51 / 100 43 192.91 42 / 82 1841 2024.37 25 / 29 2997

3 problem sizes, Barabási-Albert graphs (affinity=4)

I 500 nodes (easy), training distribution
I 1000 nodes (medium)
I 1500 nodes (hard)

5D. Chalupa et al. (2014). On the Growth of Large Independent Sets in
Scale-Free Networks.

27/30



Experiments

Reinforcement learning
Early results: set covering problem

Reward: negative
number of nodes

Proximal Policy
Optimization (PPO)

Challenging. . . but
promising !

28/30



Conclusion
Heuristic vs data-driven branching:

+ tune B&B to your problem of interest automatically
− no guarantees outside of the training distribution
− requires training instances

What next:

I real-world problems
I other solver components: node selection, cut selection...
I reinforcement learning: still a lot of challenges
I interpretation: which variables are chosen ? Why ?
I provide an clean API + benchmarks for MILP adaptive solving

(based on the open-source SCIP solver)

Paper: https://arxiv.org/abs/1906.01629 M. Gasse et al. (2019). Exact
Combinatorial Optimization with Graph Convolutional Neural Networks.

Code: https://github.com/ds4dm/learn2branch

29/30

https://arxiv.org/abs/1906.01629
https://github.com/ds4dm/learn2branch


Conclusion
Heuristic vs data-driven branching:

+ tune B&B to your problem of interest automatically
− no guarantees outside of the training distribution
− requires training instances

What next:

I real-world problems
I other solver components: node selection, cut selection...
I reinforcement learning: still a lot of challenges
I interpretation: which variables are chosen ? Why ?
I provide an clean API + benchmarks for MILP adaptive solving

(based on the open-source SCIP solver)

Paper: https://arxiv.org/abs/1906.01629 M. Gasse et al. (2019). Exact
Combinatorial Optimization with Graph Convolutional Neural Networks.

Code: https://github.com/ds4dm/learn2branch

29/30

https://arxiv.org/abs/1906.01629
https://github.com/ds4dm/learn2branch


Exact Combinatorial Optimization
with Graph Convolutional Neural Networks

Thank you!

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin,
Andrea Lodi

30/30



Learned Policy vs Reliability Pseudocost (SCIP default)

Time delta:
- python overhead
- data extraction (s)
- model evaluation

Close the gap:
- engineering ?
- efficient heuristics
(reliability) ?

1/1


	The Branching Problem
	The Graph Convolution Neural Network Model
	Experiments
	
	
	Appendix

